

 Navigation

 	
 index

 	
 next |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

2016 / Aug / mRNAseq on non-model organisms

Parts of this workshop were given on August 18th and 19th, 2016,
by C. Titus Brown and Phillip T. Brooks, at the University of Puerto
Rico - Rio Pedras campus.

For more information, please contact Titus directly.

We have an EtherPad for sharing text and asking questions [https://public.etherpad-mozilla.org/p/pr-idi-bd2k].

Tutorials:

	Welcome!
	1. Learning goals

	2. Safe space and code of conduct

	3. Instructor introductions

	4. Amazon and cloud computing - why?!

	5. Sticky notes and how they work... + Minute Cards

	Non-model organisms and RNAseq
	The overall process

	Logging in to your Amazon instance.

	Short read quality and trimming
	Prepping the computer

	Data source

	1. Copying in some data to work with.

	1. Copying data into a working location

	2. FastQC

	3. Trimmomatic

	4. FastQC again

	5. Trim the rest of the sequences

	6. Interleave the sequences

	Running digital normalization

	Running the actual assembly

	Assembly statistics and evaluation
	Applying transrate

	Evaluating read mapping

	Using transrate to compare two transcriptomes

	Merging two (or more) assemblies

	Quantification and Differential Expression of RNAseq with salmon
	Installation

	Getting the data

	Working with the counts

	A challenge exercise

	Miscellaneous advice
	Sequencing depth and number of samples

	Downloading your data

	Developing your own pipeline

	More resources
	Informational resources

	Places to share data, scripts, and results files

	Miscellaneous questions

	Tips and Tricks for working with Remote Computers
	Use screen to run things that take a long time.

	Use CyberDuck to transfer files

	Subsetting data

	Running full analyses on Amazon Web Services

	Installation of base image

Technical information

The github repository for this workshop is publicly available at https://github.com/ngs-docs/2016-mar-nonmodel.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Welcome!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Welcome!

1. Learning goals

For you:

	get a first (or second) look at tools;

	gain some experience in the basic command line;

	get 80% of way to a complete analysis of some data;

	introduction to philosophy and perspective of data analysis in science;

2. Safe space and code of conduct

This is intended to be a safe and friendly place for learning!

Please see the Software Carpentry workshop Code of Conduct: http://software-carpentry.org/conduct.html

In particular, please ask questions, because I guarantee you that your
question will help others!

3. Instructor introductions

Titus Brown - prof at UC Davis in the School of Vet Med.

Phil Brooks - postdoc at UC Davis.

4. Amazon and cloud computing - why?!

	simplifies software installation;

	can be used for bigger analyses quite easily;

	good for “burst” capacity (just got a data set!)

	accessible everywhere;

5. Sticky notes and how they work... + Minute Cards

Basic rules:

	no sticky note - “working on it”

	green sticky note - “all is well”

	red sticky note - “need help!”

Place the sticky notes where we can see them from the back of the room –
e.g. on the back of your laptop.

At the end of each session (coffee break, lunch, end of day) please
write down on an index card one thing you learned and one thing
you’re still confused about.

—

Next: Non-model organisms and RNAseq

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Non-model organisms and RNAseq

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Non-model organisms and RNAseq

With non-model systems, where there is neither a good genome nor a lot
of mRNAseq data, you have to build your own transcriptome from scratch
– so-called “de novo transcriptome assembly”. There are a few
programs to do this - most notably Trinity and Oases - and we have
found little difference [https://peerj.com/preprints/505/].

[image:]
 The main problem you’ll run into with non-model mRNAseq is that the
output is fairly noisy with respect to splice variants. Our
experience has been that many of these splice variants are probably
“real” – in the sense of actually present – but may be biological
“noise”, in the sense that they are not actually functional (See
this excellent paper by Pickrell and Pritchard making the case [http://www.ncbi.nlm.nih.gov/pubmed/21151575]). Regardless,
there’s little that you can do about this, although we will talk about
it a bit on the second day.

The overall process

[image: _static/nonmodel-rnaseq-pipeline.png]

	Copy over your RNAseq data (from two or more samples);

	Trim primers and junk from sequence (Short read quality and trimming)

	Do abundance normalization (Running digital normalization)

	Assemble everything together (Running the actual assembly)

This gives you an assembled transcriptome, consisting of many transcripts
and transcript families.

At this point you can do one or more of the following:

	Annotate your transcripts (Annotation of denovo transcriptome)

	Quantify your transcripts and examine differential expression (Quantification and Differential Expression of RNAseq with salmon)

	BLAST your transcripts individually (n-blast)

Next: Logging in to your Amazon instance.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Logging in to your Amazon instance.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Logging in to your Amazon instance.

We’ve spun up cloud machines and installed a bunch of software for you
(see Installation of base image for what, exactly). All you need to do is log in!

So,

	Find and start the terminal.

	Copy your hostname from the list that we sent around.

	Type ‘ssh ubuntu@HOSTNAME‘, pasting in the hostname (set of four . separated numbers) in place of HOSTNAME.

	Type in the super-secret password that we’ll give you.

Done!

Next: Short read quality and trimming

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Short read quality and trimming

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Short read quality and trimming

First, Log into your computer.

OK, you should now be logged into your Amazon computer! You should see
something like this:

ubuntu@ip-172-30-1-252:~$

this is the command prompt.

Prepping the computer

Before we do anything else, we need to set up a place to work and
install a few things.

First, let’s set up a place to work:

sudo chmod a+rwxt /mnt

This makes ‘/mnt’ a place where we can put data and working files.

Note

/mnt is the location we’re going to use on Amazon computers, but
if you’re working on a local cluster, it will have a different
location. Talk to your local sysadmin and ask them where they
recommend putting lots of short-term working files, i.e. the
“scratch” space.

Data source

We’re going to be using a subset of data from Tulin et al., 2013 [http://pubmed.org/pubmed/23731568], a paper looking at early transcription in the
organism Nematostella vectensis, the sea anemone.

1. Copying in some data to work with.

We’ve loaded subsets of the data onto an Amazon location for you, to
make everything faster for today’s work. We’re going to put the
files on your computer locally under the directory /mnt/data:

mkdir /mnt/data

Next, let’s grab part of the data set:

cd /mnt/data
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R1_001.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R2_001.extract.fastq.gz

Now if you type:

ls -l

you should see something like:

-r--r--r-- 1 ubuntu ubuntu 7874107 Dec 14 2013 0Hour_ATCACG_L002_R1_001.extract.fastq.gz
-r--r--r-- 1 ubuntu ubuntu 7972058 Dec 14 2013 0Hour_ATCACG_L002_R1_002.extract.fastq.gz
...

These are subsets of the original data, where we selected for reads
that belong to a few particular transcripts.

One problem with these files is that they are writeable - by default, UNIX
makes things writeable by the file owner. Let’s fix that before we go
on any further:

chmod u-w *

We’ll talk about what these files are below.

1. Copying data into a working location

First, make a working directory; this will be a place where you can futz
around with a copy of the data without messing up your primary data:

mkdir /mnt/work
cd /mnt/work

Now, make a “virtual copy” of the data in your working directory by
linking it in –

ln -fs /mnt/data/* .

These are FASTQ files – let’s take a look at them:

less 0Hour_ATCACG_L002_R1_001.extract.fastq.gz

(use the spacebar to scroll down, and type ‘q’ to exit ‘less’)

Question:

	why do the files have DNA in the name?

	why are there R1 and R2 in the file names?

	why don’t we combine all the files?

Links:

	FASTQ Format [http://en.wikipedia.org/wiki/FASTQ_format]

2. FastQC

We’re going to use FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] to
summarize the data. We already installed ‘fastqc’ on our computer for
you.

Now, run FastQC on two files:

fastqc 0Hour_ATCACG_L002_R1_001.extract.fastq.gz
fastqc 0Hour_ATCACG_L002_R2_001.extract.fastq.gz

Now type ‘ls’:

ls -d *fastqc*

to list the files, and you should see:

0Hour_ATCACG_L002_R1_001.extract_fastqc
0Hour_ATCACG_L002_R1_001.extract_fastqc.zip
0Hour_ATCACG_L002_R2_001.extract_fastqc
0Hour_ATCACG_L002_R2_001.extract_fastqc.zip

We are not going to show you how to look at these files right now -
you need to copy them to your local computer to do that. We’ll show
you that tomorrow. But! we can show you what they look like, because
I’ve made copies of them for you:

	0Hour_ATCACG_L002_R1_001.extract_fastqc/fastqc_report.html [http://2015-may-nonmodel.readthedocs.org/en/latest/_static/0Hour_ATCACG_L002_R1_001.extract_fastqc/fastqc_report.html]

	0Hour_ATCACG_L002_R2_001.extract_fastqc/fastqc_report.html [http://2015-may-nonmodel.readthedocs.org/en/latest/_static/0Hour_ATCACG_L002_R2_001.extract_fastqc/fastqc_report.html]

Questions:

	What should you pay attention to in the FastQC report?

	Which is “better”, R1 or R2? And why?

Links:

	FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]

	FastQC tutorial video [http://www.youtube.com/watch?v=bz93ReOv87Y]

3. Trimmomatic

Now we’re going to do some trimming! We’ll be using
Trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic], which
(as with fastqc) we’ve already installed via apt-get.

The first thing we’ll need are the adapters to trim off:

curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-semi-2015-03-04/TruSeq2-PE.fa

Now, to run Trimmomatic:

TrimmomaticPE 0Hour_ATCACG_L002_R1_001.extract.fastq.gz \
 0Hour_ATCACG_L002_R2_001.extract.fastq.gz \
 0Hour_ATCACG_L002_R1_001.qc.fq.gz s1_se \
 0Hour_ATCACG_L002_R2_001.qc.fq.gz s2_se \
 ILLUMINACLIP:TruSeq2-PE.fa:2:40:15 \
 LEADING:2 TRAILING:2 \
 SLIDINGWINDOW:4:2 \
 MINLEN:25

You should see output that looks like this:

...
Quality encoding detected as phred33
Input Read Pairs: 140557 Both Surviving: 138775 (98.73%) Forward Only Surviving: 1776 (1.26%) Reverse Only Surviving: 6 (0.00%) Dropped: 0 (0.00%)
TrimmomaticPE: Completed successfully ...

Questions:

	How do you figure out what the parameters mean?

	How do you figure out what parameters to use?

	What adapters do you use?

	What version of Trimmomatic are we using here? (And FastQC?)

	Do you think parameters are different for RNAseq and genomic data sets?

	What’s with these annoyingly long and complicated filenames?

	why are we running R1 and R2 together?

For a discussion of optimal RNAseq trimming strategies, see MacManes,
2014 [http://journal.frontiersin.org/Journal/10.3389/fgene.2014.00013/abstract].

Links:

	Trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic]

4. FastQC again

Run FastQC again on the trimmed files:

fastqc 0Hour_ATCACG_L002_R1_001.qc.fq.gz
fastqc 0Hour_ATCACG_L002_R2_001.qc.fq.gz

And now view my copies of these files:

	0Hour_ATCACG_L002_R1_001.qc.fq_fastqc/fastqc_report.html [http://2015-may-nonmodel.readthedocs.org/en/latest/_static/0Hour_ATCACG_L002_R1_001.qc.fq_fastqc/fastqc_report.html]

	0Hour_ATCACG_L002_R2_001.qc.fq_fastqc/fastqc_report.html [http://2015-may-nonmodel.readthedocs.org/en/latest/_static/0Hour_ATCACG_L002_R2_001.qc.fq_fastqc/fastqc_report.html]

Let’s take a look at the output files:

less 0Hour_ATCACG_L002_R1_001.qc.fq.gz

(again, use spacebar to scroll, ‘q’ to exit less).

Questions:

	is the quality trimmed data “better” than before?

	Does it matter that you still have adapters!?

5. Trim the rest of the sequences

First download the rest of the data:

cd /mnt/data
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R1_002.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R1_003.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R1_004.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R1_005.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R2_002.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R2_003.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R2_004.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/0Hour_ATCACG_L002_R2_005.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R1_001.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R1_002.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R1_003.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R1_004.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R1_005.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R2_001.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R2_002.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R2_003.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R2_004.extract.fastq.gz
curl -O -L http://dib-training.ucdavis.edu.s3.amazonaws.com/mRNAseq-non-2015-05-04/6Hour_CGATGT_L002_R2_005.extract.fastq.gz

And link it in:

cd /mnt/work
ln -fs /mnt/data/*.fastq.gz .

Now we have a lot of files – and we really don’t want to trim each and
every one of them by typing in a command for each pair! Here we’ll
make use of a great feature of the UNIX command line – the ability to
automate such tasks.

Here’s a for loop that you can run - we’ll walk through what it does
while it’s running:

rm -f orphans.fq

for filename in *_R1_*.extract.fastq.gz
do
 # first, make the base by removing .extract.fastq.gz
 base=$(basename $filename .extract.fastq.gz)
 echo $base

 # now, construct the R2 filename by replacing R1 with R2
 baseR2=${base/_R1_/_R2_}
 echo $baseR2

 # finally, run Trimmomatic
 TrimmomaticPE ${base}.extract.fastq.gz ${baseR2}.extract.fastq.gz \
 ${base}.qc.fq.gz s1_se \
 ${baseR2}.qc.fq.gz s2_se \
 ILLUMINACLIP:TruSeq2-PE.fa:2:40:15 \
 LEADING:2 TRAILING:2 \
 SLIDINGWINDOW:4:2 \
 MINLEN:25

 # save the orphans
 cat s1_se s2_se >> orphans.fq
done

Things to mention –

	# are comments;

	anywhere you see a ‘$’ is replaced by the value of the variable
after it, so e.g. $filename is replaced by each of the files
matching _R1_.extract.fastq.gz, once for each time through the
loop;

	we have to do complicated things to the filenames to get this to work, which
is what the ${base/_R1_/_R2_} stuff is about.

	what’s with ‘orphans.fq’??

Questions:

	
	how do you figure out if it’s working?

	
	copy/paste it from Word

	put in lots of echo

	edit one line at a time

	how on earth do you figure out how to do this?!

6. Interleave the sequences

Next, we need to take these R1 and R2 sequences and convert them into
interleaved form ,for the next step. To do this, we’ll use scripts
from the khmer package [http://khmer.readthedocs.org], which we
installed for you.

Now let’s use a for loop again - you might notice this is only a minor
modification of the previous for loop...

for filename in *_R1_*.qc.fq.gz
do
 # first, make the base by removing .extract.fastq.gz
 base=$(basename $filename .qc.fq.gz)
 echo $base

 # now, construct the R2 filename by replacing R1 with R2
 baseR2=${base/_R1_/_R2_}
 echo $baseR2

 # construct the output filename
 output=${base/_R1_/}.pe.qc.fq.gz

 interleave-reads.py ${base}.qc.fq.gz ${baseR2}.qc.fq.gz | \
 gzip > $output
done

gzip orphans.fq

Next: Running digital normalization

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Running digital normalization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Running digital normalization

Next, we’re going to apply abundance normalization to the data –
known as “digital normalization”, this approach was developed by our
lab to make it possible to assemble large data sets more quickly and
easily. You can read more about it in Brown et al., 2012 [http://arxiv.org/abs/1203.4802], and also see some of its affects
on transcriptome assembly in Lowe et al., 2014 [https://peerj.com/preprints/505/].

Digital normalization works by eliminating high abundance reads that are
unnecessary for assembly.

First, we’ll run it on the interleaved files we generated in the previous
section:

cd /mnt/work
normalize-by-median.py -k 20 -C 20 -N 4 -x 2e8 -s normC20k20.ct *.pe.qc.fq.gz orphans.fq.gz

(These parameters should work for essentially all mRNAseq data sets; see
the khmer documentation [http://khmer.readthedocs.org/en/v1.3/] for more
information.)

Do k-mer abundance trimming on the reads, which will eliminate the majority
of the errors (thus further decreasing the memory requirements) –:

filter-abund.py -V normC20k20.ct *.keep

See our paper Zhang et al., 2014 [http://www.ncbi.nlm.nih.gov/pubmed/25062443], Table 3, for more information on k-mer trimming effects.

Now, take all of the paired-end files and split them into paired and
orphaned reads:

for filename in *.pe.*.keep.abundfilt
do
 extract-paired-reads.py $filename
done

Put all the orphaned reads in one place:

cat *.se orphans.fq.gz.keep.abundfilt | gzip > orphans.dn.fq.gz

And now rename the paired-end files to something nice:

for filename in *.pe.qc.fq.gz.keep.abundfilt.pe
do
 base=$(basename $filename .pe.qc.fq.gz.keep.abundfilt.pe)
 output=${base}.dn.fq.gz
 gzip -c $filename > $output
done

Now, if you type:

ls *.dn.fq.gz

you’ll see all of the files that you need to move on to the next step –

0Hour_ATCACG_L002001.dn.fq.gz 6Hour_CGATGT_L002002.dn.fq.gz
0Hour_ATCACG_L002002.dn.fq.gz 6Hour_CGATGT_L002003.dn.fq.gz
0Hour_ATCACG_L002003.dn.fq.gz 6Hour_CGATGT_L002004.dn.fq.gz
0Hour_ATCACG_L002004.dn.fq.gz 6Hour_CGATGT_L002005.dn.fq.gz
0Hour_ATCACG_L002005.dn.fq.gz orphans.dn.fq.gz
6Hour_CGATGT_L002001.dn.fq.gz

Let’s remove some of the detritus before moving on:

rm *.pe *.se *.abundfilt *.keep
rm normC20k20.ct

Next: Running the actual assembly

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Running the actual assembly

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Running the actual assembly

Now we’ll assemble all of these reads into a transcriptome, using
the Trinity de novo transcriptome assembler [http://trinityrnaseq.github.io/].

We’ve already installed the prerequisites (see Installation of base image);
now, install Trinity v2.2.0 itself:

cd
curl -L https://github.com/trinityrnaseq/trinityrnaseq/archive/v2.2.0.tar.gz > trinity.tar.gz
tar xzf trinity.tar.gz
mv trinityrnaseq* trinity/

cd trinity
make

Go into the work directory, and prepare the data:

cd /mnt/work
for i in *.dn.fq.gz
do
 split-paired-reads.py $i
done

cat *.1 > left.fq
cat *.2 > right.fq

Now, run the Trinity assembler:

~/trinity/Trinity --left left.fq --right right.fq --seqType fq --max_memory 5G --bypass_java_version_check

This will give you an output file trinity_out_dir/Trinity.fasta.

Let’s copy that to a safe place, where we’ll work with it moving forward:

cp trinity_out_dir/Trinity.fasta rna-assembly.fa

Next: Assembly statistics and evaluation

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Assembly statistics and evaluation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Assembly statistics and evaluation

Note

If you are starting at this point, you’ll need a copy of the assembly
we just performed (Running the actual assembly). You can set that up by doing:

sudo chmod a+rwxt /mnt
cd /mnt
mkdir work
cd work
curl -L -O https://github.com/ngs-docs/2016-aug-nonmodel-rnaseq/raw/master/files/assembly-and-reads.tar.gz
tar xzf assembly-and-reads.tar.gz

So, we now have an assembly of our reads in rna-assembly.fa. Let’s
take a look at this file –

head rna-assembly.fa

This is a FASTA file with complex (and not, on the face of it, very
informative!) sequence headers, and a bunch of sequences. There are
three things you might want to do with this assembly - check its
quality, annotate it, and search it. Below we’re going to check its
quality; other workshops do (will) cover annotation and search.

Applying transrate

transrate [http://hibberdlab.com/transrate/] is a program for
assessing RNAseq assemblies that will give you a bunch of assembly
statistics, along with a few other outputs.

First, let’s download and install it:

cd
curl -O -L https://bintray.com/artifact/download/blahah/generic/transrate-1.0.3-linux-x86_64.tar.gz
tar xzf transrate-1.0.3-linux-x86_64.tar.gz
export PATH=~/transrate-1.0.3-linux-x86_64:$PATH

Now run transrate on the assembly to get some preliminary stats:

cd /mnt/work
transrate --assembly=rna-assembly.fa --output=stats

This should give you output like this:

[INFO] 2016-08-20 10:25:51 : n seqs 60
[INFO] 2016-08-20 10:25:51 : smallest 206
[INFO] 2016-08-20 10:25:51 : largest 4441
[INFO] 2016-08-20 10:25:51 : n bases 73627
[INFO] 2016-08-20 10:25:51 : mean len 1227.12
[INFO] 2016-08-20 10:25:51 : n under 200 0
[INFO] 2016-08-20 10:25:51 : n over 1k 34
[INFO] 2016-08-20 10:25:51 : n over 10k 0
[INFO] 2016-08-20 10:25:51 : n with orf 38
[INFO] 2016-08-20 10:25:51 : mean orf percent 67.01
[INFO] 2016-08-20 10:25:51 : n90 816
[INFO] 2016-08-20 10:25:51 : n70 1562
[INFO] 2016-08-20 10:25:51 : n50 1573
[INFO] 2016-08-20 10:25:51 : n30 2017
[INFO] 2016-08-20 10:25:51 : n10 3417
[INFO] 2016-08-20 10:25:51 : gc 0.47
[INFO] 2016-08-20 10:25:51 : bases n 0
[INFO] 2016-08-20 10:25:51 : proportion n 0.0

...which is pretty useful basic stats.

I’d suggest paying attention to:

	n seqs

	largest

	mean orf percent

and more or less ignoring the rest on a first pass.

Note: don’t use n50 to characterize your transcriptome, as with transcripts
you are not necessarily aiming for the longest contigs, and isoforms will
mess up your statistics in any case.

Evaluating read mapping

You can also use transrate to assess read mapping; this will use
read evidence to detect many kinds of errors.

[image:]
 To do this, you have to supply
transrate with the reads:

transrate --assembly=rna-assembly.fa --left=left.fq --right=right.fq --output=transrate_reads

The relevant output is here:

[INFO] 2016-08-20 10:27:47 : Read mapping metrics:
[INFO] 2016-08-20 10:27:47 : -----------------------------------
[INFO] 2016-08-20 10:27:47 : fragments 57158
[INFO] 2016-08-20 10:27:47 : fragments mapped 50840
[INFO] 2016-08-20 10:27:47 : p fragments mapped 0.89
[INFO] 2016-08-20 10:27:47 : good mappings 8276
[INFO] 2016-08-20 10:27:47 : p good mapping 0.14
[INFO] 2016-08-20 10:27:47 : bad mappings 42564
[INFO] 2016-08-20 10:27:47 : potential bridges 18
[INFO] 2016-08-20 10:27:47 : bases uncovered 12751
[INFO] 2016-08-20 10:27:47 : p bases uncovered 0.17
[INFO] 2016-08-20 10:27:47 : contigs uncovbase 47
[INFO] 2016-08-20 10:27:47 : p contigs uncovbase 0.78
[INFO] 2016-08-20 10:27:47 : contigs uncovered 14
[INFO] 2016-08-20 10:27:47 : p contigs uncovered 0.23
[INFO] 2016-08-20 10:27:47 : contigs lowcovered 25
[INFO] 2016-08-20 10:27:47 : p contigs lowcovered 0.42
[INFO] 2016-08-20 10:27:47 : contigs segmented 14
[INFO] 2016-08-20 10:27:47 : p contigs segmented 0.23

Here, the percent of good mappings is probably the first number to
look at - this is mappings where both members of the pair are aligned
in the correct orientation on the same contig, without overlapping
either end. (See transrate metrics [http://hibberdlab.com/transrate/metrics.html] for more
documentation.)

Using transrate to compare two transcriptomes

transrate can also compare an assembly to a “reference”. One nice thing
about this is that you can compare two assemblies...

First, install the necessary software:

transrate --install-deps ref

Second, download a different assembly – this is one we did with the
same starting reads, but without using digital normalization:

curl -O -L https://github.com/ngs-docs/2016-aug-nonmodel-rnaseq/raw/master/files/rna-assembly-nodn.fa.gz
gunzip rna-assembly-nodn.fa.gz

Compare in both directions:

transrate --assembly=rna-assembly.fa --reference=rna-assembly-nodn.fa --output=assembly-compare1

and

transrate --reference=rna-assembly.fa --assembly=rna-assembly-nodn.fa --output=assembly-compare2

First results:

[INFO] 2016-08-20 10:35:35 : Comparative metrics:
[INFO] 2016-08-20 10:35:35 : -----------------------------------
[INFO] 2016-08-20 10:35:35 : CRBB hits 54
[INFO] 2016-08-20 10:35:35 : n contigs with CRBB 54
[INFO] 2016-08-20 10:35:35 : p contigs with CRBB 0.9
[INFO] 2016-08-20 10:35:35 : rbh per reference 0.9
[INFO] 2016-08-20 10:35:35 : n refs with CRBB 32
[INFO] 2016-08-20 10:35:35 : p refs with CRBB 0.53
[INFO] 2016-08-20 10:35:35 : cov25 18
[INFO] 2016-08-20 10:35:35 : p cov25 0.3
[INFO] 2016-08-20 10:35:35 : cov50 18
[INFO] 2016-08-20 10:35:35 : p cov50 0.3
[INFO] 2016-08-20 10:35:35 : cov75 18
[INFO] 2016-08-20 10:35:35 : p cov75 0.3
[INFO] 2016-08-20 10:35:35 : cov85 16
[INFO] 2016-08-20 10:35:35 : p cov85 0.27
[INFO] 2016-08-20 10:35:35 : cov95 14
[INFO] 2016-08-20 10:35:35 : p cov95 0.23
[INFO] 2016-08-20 10:35:35 : reference coverage 0.24

Second results:

[INFO] 2016-08-20 10:36:45 : Comparative metrics:
[INFO] 2016-08-20 10:36:45 : -----------------------------------
[INFO] 2016-08-20 10:36:45 : CRBB hits 45
[INFO] 2016-08-20 10:36:45 : n contigs with CRBB 45
[INFO] 2016-08-20 10:36:45 : p contigs with CRBB 0.75
[INFO] 2016-08-20 10:36:45 : rbh per reference 0.75
[INFO] 2016-08-20 10:36:45 : n refs with CRBB 31
[INFO] 2016-08-20 10:36:45 : p refs with CRBB 0.52
[INFO] 2016-08-20 10:36:45 : cov25 17
[INFO] 2016-08-20 10:36:45 : p cov25 0.28
[INFO] 2016-08-20 10:36:45 : cov50 17
[INFO] 2016-08-20 10:36:45 : p cov50 0.28
[INFO] 2016-08-20 10:36:45 : cov75 16
[INFO] 2016-08-20 10:36:45 : p cov75 0.27
[INFO] 2016-08-20 10:36:45 : cov85 15
[INFO] 2016-08-20 10:36:45 : p cov85 0.25
[INFO] 2016-08-20 10:36:45 : cov95 15
[INFO] 2016-08-20 10:36:45 : p cov95 0.25
[INFO] 2016-08-20 10:36:45 : reference coverage 0.14

In this case you can see that our first assembly “covers” more of the
other assembly than the other assembly does ours (rbh per reference,
and reference coverage). However, you can also see that the
assemblies differ quite a bit (for reasons that I haven’t tracked
down).

Merging two (or more) assemblies

Finally, you can also use transrate to merge contigs from multiple
assemblies, if you’ve used read mapping –

transrate --assembly=rna-assembly.fa \
 --merge-assemblies=rna-assembly-nodn.fa \
 --left=left.fq --right=right.fq \
 --output=transrate-merge

...although for our assemblies here it doesn’t really improve them.

Back to index: 2016 / Aug / mRNAseq on non-model organisms

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Quantification and Differential Expression of RNAseq with salmon

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Quantification and Differential Expression of RNAseq with salmon

Salmon is one of a breed of new, very fast RNAseq counting packages.
Like Kallisto and Sailfish, Salmon counts fragments without doing
up-front read mapping. Salmon can be used with edgeR and others
to do differential expression analysis.

Salmon preprint: http://biorxiv.org/content/early/2015/06/27/021592

Salmon Web site: https://combine-lab.github.io/salmon/

Intro blog post: http://robpatro.com/blog/?p=248

A (very recent) blog post evaluating and comparing methods: https://cgatoxford.wordpress.com/2016/08/17/why-you-should-stop-using-featurecounts-htseq-or-cufflinks2-and-start-using-kallisto-salmon-or-sailfish/

Installation

Download and unpack salmon, and add it to your path:

cd
curl -L -O https://github.com/COMBINE-lab/salmon/releases/download/v0.7.0/Salmon-0.7.0_linux_x86_64.tar.gz
tar xzf Salmon-0.7.0_linux_x86_64.tar.gz
export PATH=$PATH:$HOME/SalmonBeta-0.7.0_linux_x86_64/bin

Getting the data

Do:

sudo chmod a+rwxt /mnt
mkdir /mnt/data
cd /mnt/data/
curl -O https://s3.amazonaws.com/public.ged.msu.edu/nema-subset.tar.gz
tar xzf nema-subset.tar.gz

(This is data from Tulin et al., 2013 [http://www.evodevojournal.com/content/4/1/16] that was processed
and assembled with the khmer protocols steps 1-3 [http://khmer-protocols.readthedocs.org/en/ctb/mrnaseq/index.html]
– basically, what we did in Short read quality and trimming, but for the entire data set.)

Make a directory to work in:

mkdir /mnt/quant

Copy in the transcriptome from the snapshot:

cd /mnt/quant
cp /mnt/data/nema.fa .

Index it with salmon:

salmon index --index nema_index --transcripts nema.fa --type quasi

Link the reads in that we downloaded:

ln -fs /mnt/data/*.fq .

Now, quantify the reads against the reference using Salmon:

for i in *.1.fq
do
 BASE=$(basename $i .1.fq)
 salmon quant -i nema_index --libType IU \
 -1 $BASE.1.fq -2 $BASE.2.fq -o $BASE.quant;
done

(Note that --libType must come before the read files!)

This will create a bunch of directories named something like
0Hour_ATCACG_L002001.quant, containing a bunch of files. Take a look
at what files there are:

find 0Hour_ATCACG_L002001.quant -type f

You should see:

0Hour_ATCACG_L002001.quant/lib_format_counts.json
0Hour_ATCACG_L002001.quant/cmd_info.json
0Hour_ATCACG_L002001.quant/libParams/flenDist.txt
0Hour_ATCACG_L002001.quant/aux_info/observed_bias.gz
0Hour_ATCACG_L002001.quant/aux_info/observed_bias_3p.gz
0Hour_ATCACG_L002001.quant/aux_info/expected_bias.gz
0Hour_ATCACG_L002001.quant/aux_info/fld.gz
0Hour_ATCACG_L002001.quant/aux_info/meta_info.json
0Hour_ATCACG_L002001.quant/logs/salmon_quant.log
0Hour_ATCACG_L002001.quant/quant.sf

The two most interesting files are lib_format_counts.json and quant.sf.
The latter contains the counts; the former contains the log information
from running things. Take a look at the counts metadata –

less 0Hour_ATCACG_L002001.quant/lib_format_counts.json

and see what you think it means... (Use ‘q’ to quit out of less.)

You might also be interested in the log file –

less 0Hour_ATCACG_L002001.quant/logs/salmon_quant.log

A few notes –

	what number should you be looking at?

	check out the LIBTYPE docs [https://salmon.readthedocs.io/en/latest/salmon.html#what-s-this-libtype]

So, what should you pay attention to here? Let’s list them out...

Working with the counts

Now, the quant.sf files actually contain the relevant information about
expression – take a look:

head -20 0Hour_ATCACG_L002001.quant/quant.sf

The first column contains the transcript names, and the
fifth column is what edgeR etc will want - the “raw counts”.
However, they’re not in a convenient location / format for edgeR to use;
let’s fix that.

Download the gather-counts.py script:

curl -L -O https://github.com/ngs-docs/2016-aug-nonmodel-rnaseq/raw/master/files/gather-counts.py

and run it:

python ./gather-counts.py

This will give you a bunch of .counts files, processed from the quant.sf files
and named for the directory they are in.

Now, run an edgeR script (nema.salmon.R [https://github.com/ngs-docs/2016-aug-nonmodel-rnaseq/blob/master/files/nema.salmon.R])
that loads all this in and calculates a few plots –

curl -O -L https://raw.githubusercontent.com/ngs-docs/2016-aug-nonmodel-rnaseq/master/files/nema.salmon.R
Rscript nema.salmon.R

These will produce two plots, nema-edgeR-MDS.pdf and nema-edgeR-MA-plot.pdf.

You can see the plot outputs for the whole data set (all the reads) here:

	nema-edgeR-MDS.pdf [https://github.com/ngs-docs/2016-aug-nonmodel-rnaseq/blob/master/files/nema-edgeR-MDS.pdf]

	nema-edgeR-MA-plot.pdf [https://github.com/ngs-docs/2016-aug-nonmodel-rnaseq/blob/master/files/nema-edgeR-MA-plot.pdf] (0 vs 6 hour)

A challenge exercise

How would we create an MA plot comparing 6 Hour vs 12 Hour?

2016 / Aug / mRNAseq on non-model organisms

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Miscellaneous advice

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Miscellaneous advice

Sequencing depth and number of samples

Hart et al. (2013) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842884/] provides a
nice description and a set of tools for estimating your needed
sequencing depth and number of samples. They provide an Excel based
calculator [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842884/bin/supp_data.zip]
for calculating number of samples. Their numbers are surprisingly
large to me ;).

In a proposal for an exploratory effort to discover differentially
expressed genes, I would suggest 3-5 biological replicates with 30-50
million reads each. More reads is usually cheaper than more replicates,
so 50-100m reads may give you more power to resolve smaller fold changes.

Downloading your data

If you do your sequencing at the MSU Core Facility, you’ll get an e-mail
from them when you’re samples are ready. The e-mail will give you an
FTP site, a username, and a password, as well as a URL. You can
use these to download your data. For example, if you get:

hostname: titan.bch.msu.edu
username: rnaseqmodel
password: QecheJa6

URI: ftp://rnaseqmodel:QecheJa6@titan.bch.msu.edu

you can go to ftp://rnaseqmodel:QecheJa6@titan.bch.msu.edu in your
Web browser; that is, it lets you combine your username and password
to open that link.

In this case, you will see a ‘testdata’ directory. If you click on that,
you’ll see a bunch of fastq.gz files. These are the files that you
want to get onto the HPC.

To download these files onto the HPC, log into the HPC, go to the
directory on the HPC you want to put the files in, and run a ‘wget’ –
for example, on the HPC:

mkdir ~/testdata
cd ~/testdata

wget -r -np -nH ftp://rnaseqmodel:QecheJa6@titan.bch.msu.edu/testdata/

This will download _all_ of the files in that directory. You can also do
them one at a time, e.g. to get ‘Ath_Mut_1_R1.fastq.gz’, you would do

wget ftp://rnaseqmodel:QecheJa6@titan.bch.msu.edu/testdata/Ath_Mut_1_R1.fastq.gz

Tada!

Developing your own pipeline

Even if all you plan to do is change the filenames you’re operating on,
you’ll need to develop your own analysis pipeline. Here are some tips.

	Start with someone else’s approach; don’t design your own. There
are lots of partly done examples that you can find on the Web,
including in this tutorial.

	Generate a data subset (the first few 100k reads, for example).

	Run commands interactively on an HPC dev node until you get all of
the commands basically working; track all of your commands in a
Word document or some such.

	Once you have a set of commands that seems to work on small data,
write a script. Run the script on the small data again; make sure
that works.

	Turn it into a qsub script (making sure you’re in the right
directory, have the modules loaded, etc.)

	Make sure the qsub script works on your same small data.

	Scale up to a big test data set.

	Once that’s all working, SAVE THE SCRIPT SOMEWHERE. Then,
edit it to work on all your data sets (you may want to make subsets
again, as much as possible).

	Provide your scripts and raw counts files as part of any publication
or thesis, perhaps via figshare [http://figshare.com].

Next: More resources

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 More resources

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

More resources

Informational resources

UT (Austin) Sequencing Core prices [https://wikis.utexas.edu/display/GSAF/Pricing] - costs and yields for sequencing.

ANGUS - summer NGS course [http://angus.readthedocs.org/en/2014] - lots of resources and materials and book reference

Data Carpentry [http://www.datacarpentry.org] - intro to R, etc.

Software Carpentry [http://software-carpentry.org] - more scripting, Python, etc.

Places to share data, scripts, and results files

Figshare [http://figshare.com].

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Miscellaneous questions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Miscellaneous questions

	When should I use de novo assembly, and when should I use
reference-guided (ab initio) assembly [http://2015-mar-semimodel.readthedocs.org/en/latest/]?

This is always a judgement call, and you can always try both
(although there aren’t good methods for comparing the results).

The short version is that if you have no nearby genomic sequence,
you must use de novo assembly; if you have an incomplete genomic
sequence you may want to use de novo assembly; and if you have
a great genomic sequence, you shouldn’t use de novo assembly.

The positives of using de novo assembly are that you do not depend
in any way on the reference. So, if the reference genome is missing,
incomplete, or incorrect, you will not have biased results from doing
it.

The negatives are that you will get many more isoforms from de novo
transcriptome assembly than you will from reference-based
transcriptome assembly, and the process is probably a bit more
computationally intensive (and certainly more subject to problems from
bad data).

	What are “transcript families”?

Transcript families and components are computational terms for
“transcripts that may share exons”. The biological analogy to use
is splice isoforms - but keep in mind that the computer can’t
necessarily tell the difference between transcripts that are “real”
splice variants, noisy splicing, different allelic variants of
transcripts, recent paralogs, etc. etc. - all the computer knows
is that the transcripts share some amount of sequence.

So, transcript families are Trinity’s best guess at transcripts
that come from the same locus.

	What should we look at in FastQC results for RNAseq data?

The main thing to pay attention to is the first graph, of quality
scores vs position. If your average quality takes a big dip at a
particular position, you might consider trimming at that position.

	How do we transfer our data to Amazon (or any remote computer)?

There are two options –

If your data is on your local computer, you can use Cyberduck to
transfer the data to Amazon. (see
Tips and Tricks for working with Remote Computers).

If the data is on a remote computer (like your sequencing center)
you can probably use ‘curl’ or ‘wget’ to copy the data directly
from the sequencing center to your Amazon computer. You should ask
them what the full URL (with username and password) is to each
of your data sets, or find your local computer expert to help out.

	How do we use Amazon to run full analyses?

See Tips and Tricks for working with Remote Computers, “Running full analyses”.

	Can we use XSEDE or iPlant or <insert other platform here> to run these
analyses?

Yes, but you should omit all of the ‘apt-get’ and ‘pip install’
instructions - the sysadmins on those computers will need to install
these programs for you.

	How do we know if our reference transcriptome is “good enough”?

See remapping.

	How do I choose the set of tools to use?

Our recommendations, in order:

	Find a tool that a nearby lab is using, and start there.

	Look at tools and workflows that are used in published papers by
groups working in your area.

	Look for good tutorials online.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Tips and Tricks for working with Remote Computers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Tips and Tricks for working with Remote Computers

Use screen to run things that take a long time.

Often you want to run things that will take days or weeks to run. The ‘screen’
command will let you run programs and record the output, and then come
back later and “reconnect”.

For example, try running the beginning bit of digital normalization
(Running digital normalization) inside of screen:

screen
cd /mnt/work
normalize-by-median.py -k 20 -p -C 20 -N 4 -x 2e9 -s normC20k20.ct *.pe.qc.fq.gz

The normalize-by-median command will take a while, but now that it’s
running in screen, you can “detach” from your remote computer and
walk away for a bit. For example,

	close your terminal window;

	open up a new one and connect into your Amazon machine;

	type ‘screen -r’ to reconnect into your running screen.

(See amazon/using-screen for a more complete rundown on
instructions.)

Use CyberDuck to transfer files

To transfer remote files to your local laptop, or local laptop files to the
remote system, try using CyberDuck [https://cyberduck.io/?l=en]. We’ll
walk through it in class.

Subsetting data

If you want to generate a small subset of a FASTQ file for testing,
you can do something like this:

gunzip -c /mnt/data/SRR534005_1.fastq.gz | head -400000 | gzip > sample.fq.gz

This will take 400,000 lines (or 100,000 FASTQ records) from the beginning
of the SRR534005_1.fastq.gz file and put them in the sample.fq.gz
file.

Running full analyses on Amazon Web Services

You need to do three things to run a full analysis on AWS (or really
any cloud machine) –

	you need to get your data onto that machine.

	you need to be prepared to let things run for a long time.

	you need to have a large disk to store all the intermediate files.
A good rule of thumb is that every 200 million reads requires about a
TB of intermediate disk space.

Getting your data onto the machine can be done by using the ‘curl’ command
to download data from (e.g.) your sequencing core. This will be core
specific and it’s something we can help you with when you need the help.

To let things run for a long time, you basically need to run them in screen
(see above, “Use screen.”)

By default, Amazon doesn’t give you really big hard disks on your machine –
you can use ‘df’ to take a look. On an m3.xlarge machine, you can ask about
disk space on /mnt by using ‘df’ (disk free):

df -k /mnt

You should see something like this:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvdb 38565344 20098736 16500940 55% /mnt

which tells you that /mnt has 40 GB of disk space.

To add disk space to your Amazon instance, see this set of instructions:

http://angus.readthedocs.org/en/2014/amazon/setting-up-an-ebs-volume.html

The simplest advice is to make /mnt a 1 TB disk, which should hold a half
dozen mRNAseq data sets and all the intermediate data.

LICENSE:
This documentation and all textual/graphic site content is licensed
under the
Creative Commons - 0 License
(CC0) -- fork @
github. Presentations (PPT/PDF) and PDFs are the property of
their respective owners and are under the terms indicated within the
presentation.

 Installation of base image

 Navigation

 	
 index

 	
 previous |

 	2016-aug-nonmodel-rnaseq 1.0 documentation

Installation of